NeuralNetPy¶
Neural Network Library¶
- class NeuralNetPy.ACTIVATION¶
Bases:
pybind11_object
Members:
RELU : Rectified Activation Function
SIGMOID : Sigmoid Activation Function
SOFTMAX : Softmax Activation Function
- RELU = <ACTIVATION.RELU: 0>¶
- SIGMOID = <ACTIVATION.SIGMOID: 1>¶
- SOFTMAX = <ACTIVATION.SOFTMAX: 2>¶
- property name¶
- property value¶
- class NeuralNetPy.LOSS¶
Bases:
pybind11_object
Members:
QUADRATIC
MCE
BCE
- BCE = <LOSS.BCE: 2>¶
- MCE = <LOSS.MCE: 0>¶
- QUADRATIC = <LOSS.QUADRATIC: 1>¶
- property name¶
- property value¶
- class NeuralNetPy.TrainingData2dI¶
Bases:
pybind11_object
- batch(self: NeuralNetPy.TrainingData2dI, batchSize: int, stratified: bool = False, shuffle: bool = False, dropLast: bool = False, verbose: bool = False) None ¶
This method will separate the inputs and labels data into batches of the specified size
- getMiniBatches(self: NeuralNetPy.TrainingData2dI) List[Tuple[List[List[float]], List[float]]] ¶
- class NeuralNetPy.TrainingData3dI¶
Bases:
pybind11_object
- batch(self: NeuralNetPy.TrainingData3dI, batchSize: int, stratified: bool = False, shuffle: bool = False, dropLast: bool = False, verbose: bool = False) None ¶
This method will separate the inputs and labels data into batches of the specified size
- getMiniBatches(self: NeuralNetPy.TrainingData3dI) List[Tuple[List[List[List[float]]], List[float]]] ¶
- class NeuralNetPy.WEIGHT_INIT¶
Bases:
pybind11_object
Members:
RANDOM : Initialize weights with random values
- GLOROT
Initialize weights with Glorot initialization.
Tip
Best when combined with RELU
- HE
Initialize weights with He initialization.
Tip
Best when combined with RELU or SOFTMAX
- LECUN
Initialize weights with Lecun initialization.
Tip
Best when combined with SOFTMAX
- GLOROT = <WEIGHT_INIT.GLOROT: 1>¶
- HE = <WEIGHT_INIT.HE: 2>¶
- LECUN = <WEIGHT_INIT.LECUN: 3>¶
- RANDOM = <WEIGHT_INIT.RANDOM: 0>¶
- property name¶
- property value¶